Researchers figure out how to 'grow' carbon nanotubes with specific atomic structures
Aug. 26, 2013 Move over, silicon. In a breakthrough in the quest for the next generation of computers and materials, researchers at USC have solved a longstanding challenge with carbon nanotubes: how to actually build them with specific, predictable atomic structures.
Share This:
"We are solving a fundamental problem of the carbon nanotube," said Chongwu Zhou, professor in the Ming Hsieh Department of Electrical Engineering at the USC Viterbi School of Engineering and corresponding author of the study published August 23 in the journal Nano Letters. "To be able to control the atomic structure, or chirality, of nanotubes has basically been our dream, a dream in the nanotube field."
If this is an age built on silicon, then the next one may be built on carbon nanotubes, which have shown promise in everything from optics to energy storage to touch screens. Not only are nanotubes transparent, but this research discovery on how to control the atomic structure of nanotubes will pave the way for computers that are smaller, faster and more energy efficient than those reliant on silicon transistors.
"We are now working on scale up the process," Zhou said. "Our method can revoutionize the field and significantly push forward the real applications of nanotube in many fields."
Until now, scientists were unable to "grow" carbon nanotubes with specific attributes -- say metallic rather than semiconducting -- instead getting mixed, random batches and then sorting them. The sorting process also shortened the nanotubes significantly, making the material less practical for many applications.
For more than three years, the USC team has been working on the idea of using these short sorted nanotubes as "seeds" to grow longer nanotubes, extending them at high temperatures to get the desired atomic structure.
A paper last year by the same team in Nature Communications outlined the technique, and in the current Nano Letters paper, the researchers report on their latest major success: identifying the "growth recipes" for building carbon nanotubes with specific atomic structures.
"We identify the mechanisms required for mass amplification of nanotubes," said co-lead author Jia Liu, a doctoral student in chemistry at the USC Dornsife College of Letters, Arts and Sciences, recalling the moment when, alone in a dark room, she finally saw the spectral data supporting their method. "It was my Eureka moment."
"To understand nanotube growth behaviors allows us to produce larger amounts of nanotubes and better control that growth," she continued.
Each defined type of carbon nanotube has a frequency at which it expands and contracts. The researchers showed that the newly grown nanotubes had the same atomic structure by matching the Raman frequency.
"This is a very exciting field, and this was the most difficult problem," said co-lead author Bilu Liu, a postdoctoral research associate at the USC Viterbi School of Engineering. "I met Professor Zhou [senior author of the paper] at a conference and he said he wanted to tackle the challenge of controlling the atomic structure of nanotubes. That's what brought me to his lab, because it was the biggest challenge."
In addition, the study found that nanotubes with different structures also behave very differently during their growth, with some nanotube structures growing faster and others growing longer under certain conditions.
"Previously it was very difficult to control the chirality, or atomic structure, of nanotubes, particularly when using metal nanoparticles," Bilu Liu said. "The structures may look quite similar, but the properties are very different. In this paper we decode the atomic structure of nanotubes and show how to control precisely that atomic structure."
Welcome to SUV System Ltd!
SUV System Ltd is ISO 90012008 Certified electronics distributor with 10 years of experiences.
We have built up long term business relationship with about many companies which are stockers and authorized agents. we have a steady and reliable supply to meet customer's demands to the greatest extent .Confidently, we are able to lower your cost and support your business with our years of professional service.
SUV System Ltd is Electronic Components Distributor Supplies,Find Quality Electronic Components Supplies Products IC(Integrated Circuits),Connectors,Capacitor,Resistors,Diodes,Transistors,LED at Suvsystem.com. Sourcing Other Energy, Environment, Excess Inventory Products from Manufacturers and Suppliers at Suvsystem.com
Electronic Components distributor:http://www.suvsystem.com
Connectors Distributor:http://www.suvsystem.com/l/Connectors-1.html
IC Distributor:http://www.suvsystem.com/l/IC(Integrated-Circuits)-1.html
LED Distributor:http://www.suvsystem.com/l/LED-1.html
Capacitor Distributor:http://www.suvsystem.com/l/Capacitor-1.html
Transistor Distributor:http://www.suvsystem.com/l/Transistors-1.html
Resistor Distributor:http://www.suvsystem.com/l/Resistors-1.html
Diode Distributor:http://www.suvsystem.com/l/Diodes-1.html
SUV System Ltd insists on the managing faith ofsincereness,speciality,foresight, win-win,so we build up stable-relationship customers located all over the world, including the States, Europe, Argentina, UAE, Malaysia, Australia,and India etc
we are focus on the following fields,and hope we can help you.
About US Current Sensors Resistors Low Ohmic Resistors Fast Recovery Diodes Industrial IC TOSHIBA Diodes Chip Fuses Schottky Diodes Texas Instruments(TI) IC Resistor Arrays NEC Transistors Thick Film Resistors FAIRCHILD diodes NS IC Switches chip Filter saws IDT IC LINEAR IC PANASONIC Resistors AD IC DIODES Transistors Kingbrigt LED Freescale Semiconductor Rectifier Diodes IR Diodes ALTERA IC NXP Diodes Ligitek LED Microchip IC Electronic News Diodes Inc PANASONIC Cypress IC HARRIS IC MAXIM IC Xilinx IC LITTELFUSE Diodes ON Transistors High Precision Resistors TI IC
http://www.suvsystem.com/a/5254.aspx
没有评论:
发表评论